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Abstract
The Python package fluidsim is introduced in this article as an extensible frame-
work for Computational Fluid Mechanics (CFD) solvers. It is developed as a
part of FluidDyn project (Augier et al., 2018), an effort to promote open-source
and open-science collaboration within fluid mechanics community and intended for
both educational as well as research purposes. Solvers in fluidsim are scalable,
High-Performance Computing (HPC) codes which are powered under the hood by
the rich, scientific Python ecosystem and the Application Programming Interfaces
(API) provided by fluiddyn and fluidfft packages (Mohanan et al., 2018). The
present article describes the design aspects of fluidsim, viz. use of Python as the
main language; focus on the ease of use, reuse and maintenance of the code with-
out compromising performance. The implementation details including optimization
methods, modular organization of features and object-oriented approach of using
classes to implement solvers are also briefly explained. Currently, fluidsim in-
cludes solvers for a variety of physical problems using different numerical methods
(including finite-difference methods). However, this metapaper shall dwell only
on the implementation and performance of its pseudo-spectral solvers, in particu-
lar the two- and three-dimensional Navier-Stokes solvers. We investigate the per-
formance and scalability of fluidsim in a state of the art HPC cluster. Three

1Institute of Engineering Univ. Grenoble Alpes

http://fluidsim.readthedocs.io
https://fluiddyn.readthedocs.io
http://fluidsim.readthedocs.io
http://fluiddyn.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io


UP JORS software Latex paper template version 0.1

similar pseudo-spectral CFD codes based on Python (Dedalus, SpectralDNS) and
Fortran (NS3D) are presented and qualitatively and quantitatively compared to
fluidsim. The source code is hosted at Bitbucket as a Mercurial repository bit-
bucket.org/fluiddyn/fluidsim and the documentation generated using Sphinx can
be read online at fluidsim.readthedocs.io.

Keywords
Python; CFD; HPC; MPI; modular; object-oriented; tested; documented; open-
source

Introduction
Designed as a specialized package of the FluidDyn project for computational fluid
mechanics (CFD), fluidsim is a comprehensive solution to address the needs of
a fluid mechanics student and researcher alike — by providing scalable high per-
formance solvers, on-the-fly postprocessing, and plotting functionalities under one
umbrella. In the open-science paradigm, scientists will be both users and develop-
ers of the tools at the same time. An advantage of fluidsim is that, most of the
users just have to read and write Python code. fluidsim ensures that all critical
modules, classes and functions are well documented — both as inline comments and
as standalone documentation, complete with examples and tutorials. For these rea-
sons fluidsim can become a true collaborative code and has the potential to replace
some in-house pseudo-spectral codes written in more conventional languages.

Balance between runtime efficiency and cost of development

In today’s world where clusters are moving from petascale to exascale performance,
computing power is aplenty. In such a scenario, it becomes apparent that man-hours
are more expensive than computing time. In other words, the cost of development
outweighs the cost of computing time. Therefore, developers should be willing to
make small sacrifices in efficiency, to improve development time, code maintainabil-
ity and clarity in general.
For the above reasons, majority of fluidsim’s code-base, in terms of line of code,
is written using pure Python syntax. However, this is done without compromising
performance, by making use of libraries such as Numpy, and optimized compilers
such as Cython and Pythran.
Numpy functions and data types are sufficient for applications such as initialization
and postprocessing operations, since these functions are used sparingly. Computa-
tionally intensive tasks such as time-stepping and linear algebra operators which are
used in every single iteration must be offloaded to compiled extensions. This opti-
mization strategy can be considered as the computational equivalent of the Pareto
principle, also known as the 80/20 rule2. The goal is to optimize such that “80
percent of the runtime is spent in 20 percent of the source code” (Meyers, 2012).
Here, Cython (Behnel et al., 2011) and Pythran (Guelton, 2018) compilers comes
in handy. An example on how we use Pythran to reach similar performance than

2See Behnel et al. (2011), wiki.haskell.org/Why Haskell matters
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with Fortran by writing only Python code is described in the companion paper on
fluidfft (Mohanan et al., 2018).
The result of using such an approach is studied in the forthcoming sections by
measuring the performance of fluidsim. We will demonstrate that a very large
percentage of the elapsed time is spent in the execution of optimized compiled
functions and thus that the “Python cost” is negligible.

Target audiences

fluidsim is designed to cater to the needs of three kinds of audience.

• Users, who run simulations with already available solvers. To do this, one
needs to have very basic skills in Python scripting.

• Advanced users, who may extend fluidsim by developing customized solvers
for new problems by taking advantage of built-in operators and time-stepping
classes. In practice, one can easily implement such solvers by changing a few
methods in base solver classes. To do this, one needs to have fairly good skills
in Python and in particular object-oriented programming.

• Developers, who develop the base classes, in particular, the operators and time
stepping classes. One may also sometime need to write compiled extensions
to improve runtime performance. To do this, desirable traits include good
knowledge in Python, Numpy, Cython and Pythran.

This metapaper is intended as a short introduction to fluidsim and its implemen-
tation, written mainly from a user-perspective. Nevertheless, we also discuss how
fluidsim can be customized and extended with minimal effort to promote code
reuse. A more comprehensive and hands-on look at how to use fluidsim can be
found in the tutorials3, both from a user’s and a developer’s perspective. In the
latter half of the paper, we shall also inspect the performance of fluidsim in large
computing clusters and compare fluidsim with three different pseudo-spectral CFD
codes.

Implementation and architecture
New features were added over the years to the package whenever demanded by
research interests, thus making the code very user-centric and function-oriented.
This aspect of code development is termed as YAGNI, one of the principles of agile
programming software development method, which emphasizes not to spent a lot
of time developing a functionality, because most likely you aren’t gonna need it.
Almost all functionalities in fluidsim are implemented as classes and its methods
are designed to be modular and generic. This means that the user is free to use
inheritance to modify certain parts to suit one’s needs, and avoiding the risk of
breaking a functioning code.

3See fluidsim.readthedocs.io/en/latest/tutorials.html
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Package organization

fluidsim is meant to serve as a framework for numerical solvers using different
methods. For the present version of fluidsim there is support for finite differ-
ence and pseudo-spectral methods. An example of a finite difference solver is
fluidsim.solvers.ad1d which solves the 1D advection equation. There are also
solvers which do not rely on most of the base classes, such as fluidsim.base.basilisk
which implements a 2D adaptive meshing solver based on the CFD code Basilisk.
The collection of solvers using pseudo-spectral methods are more feature-rich in
comparison.
The code is organized into the following sub-packages:

• fluidsim.base: contains all base classes and a solver for the trivial equation
∂tû = 0.

• fluidsim.operators: specialized linear algebra and numerical method oper-
ators (e.g., divergence, curl, variable transformations, dealiasing).

• fluidsim.solvers: solvers and postprocessing modules for problems such as
1D advection, 2D and 3D Navier-Stokes equations (incompressible and under
the Boussinesq approximation, with and without density stratification and
system rotation), one-layer shallow water and Föppl-von Kármán equations.

• fluidsim.util: utilities to load and modify an existing simulation, to test,
and to benchmark a solver.

Subpackages base and operators form the backbone of this package, and are not
meant to be used by the user explicitly. In practice, one can make an entirely
new solver for a new problem using this framework by simply writing one or two
importable files containing three classes:

• an InfoSolver class4, containing the information on which classes will be used
for the different tasks in the solver (time stepping, state, operators, output,
etc.).

• a Simulation class5 describing the equations to be solved.

• a State class6 defining all physical variables and their spectral counterparts
being solved (for example: ux and uy) and methods to compute one variable
from another.

We now turn our attention to the simulation object which illustrates how to access
the code from the user’s perspective.

4Inheriting from the base class fluidsim.base.solvers.info base.InfoSolverBase.
5Inheriting from the base class fluidsim.base.solvers.base.SimulBase.
6Inheriting from the base class fluidsim.base.state.StateBase.

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://basilisk.fr/
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The simulation object

The simulation object is instantiated with necessary parameters just before starting
the time stepping. A simple 2D Navier-Stokes simulation can be launched using
the following Python script:

from fluidsim.solvers.ns2d.solver import Simul

params = Simul.create_default_params()

# Modify parameters as needed

sim = Simul(params)

sim.time_stepping.start()

The script first invokes the create default params classmethod which returns a
Parameters object, typically named params containing all default parameters. Any
modifications to simulation parameters is made after this step, to meet the user’s
needs. The simulation object is then instantiated by passing params as the only
argument, typically named sim, ready to start the iterations.
As demonstrated above, parameters are stored in an object of the class Parameters,
which uses the ParamsContainer API7 of fluiddyn package (Augier et al., 2018).
Parameters for all possible modifications to initialization, preprocessing, forcing,
time-stepping, and output of the solvers is incorporated into the object params in a
hierarchial manner. Once initialized, the “public” (not hidden) API does not allow
to add new parameters to this object and only modifications are permitted.8

This approach is different from conventional solvers reliant on text-based input
files to specify parameters, which is less robust and can cause the simulation to
crash due to human errors during runtime. A similar, but less readable approach
to ParamsContainer is adopted by OpenFOAM which relies on dictionaries to
customize parameters. The params object can be printed on the Python or IPython
console and explored interactively using tab-completion, and can be loaded from
and saved into XML and HDF5 files, thus being very versatile.
Note that the same simulation object is used for the plotting and post-processing
tasks. During or after the execution of a simulation, a simulation object can be
created with the following code (to restart a simulation, one would rather use the
function fluidsim.load state phys file.):

from fluidsim import load_sim_for_plot

# in the directory of the simulation

sim = load_sim_for_plot()

# or with the path of the simulation

# sim = load_sim_for_plot("~/Sim_data/NS2D.strat_240x240_S8x8_2018-04-20_13-45-54")

# to retrieve the value of a parameter

print(f"viscosity = {sim.params.nu_2}")

# to plot the space averaged quantities versus time

7See fluiddyn.readthedocs.io/en/latest/generated/fluiddyn.util.paramcontainer.html
8Example on modifying the parameters for a simple simulation: fluid-

sim.readthedocs.io/en/latest/examples/running simul.html

https://docs.python.org/3/library/functions.html#classmethod
https://fluiddyn.readthedocs.io/en/latest/generated/fluiddyn.util.paramcontainer.html
http://fluiddyn.readthedocs.io
https://fluiddyn.readthedocs.io/en/latest/generated/fluiddyn.util.paramcontainer.html
https://fluidsim.readthedocs.io/en/latest/examples/running-simul-onlineplot.html
https://fluidsim.readthedocs.io/en/latest/examples/running-simul-onlineplot.html


UP JORS software Latex paper template version 0.1

sim.output.spatial_means.plot()

# to load the corresponding data

data = sim.output.spatial_means.load()

# for a 2d plot of the variable "b"

sim.output.phys_fields.plot("b", time=2)

# to save a 2d animation

sim.output.phys_fields.animate("b", tmin=1, tmax=5, save_file=True)

sim: Simul 

create_default_params
tendencies_nonlin 

info_solver: InfoSolverNS3D

output: Output 

compute_energy_fft 
compute_enstrophy_fft 

params: Parameters 

oper 
init_fields 
time_stepping
forcing
output 

oper: OperatorsPseudoSpectral3D

nx, ny, nz: <int>
Lx, Ly, Lz: <float>
x_seq, y_seq, z_seq: ndarray<float64, 1D>
Kx, Ky, Kz: ndarray<float64, 3D>

fft
ifft
fft_as_arg
ifft_as_arg
ifft_as_arg_destroy
dealiasing
divfft_from_vecfft
rotfft_from_vecfft
rotfft_from_vecfft_outin
project_perpk3d
vector_product
compute_energy_from_X
compute_energy_from_K

state: StateNS3D 

compute 
statephys_from_statespect
statespect_from_statephys 

time_stepping: TimeSteppingPseudoSpectral 

start
one_time_step
one_time_step_computation 

init_fields: InitFieldsNS3D 

preprocess: PreprocessPseudoSpectral forcing: ForcingBasePseudoSpectral 

print_stdout: PrintStdOutNS3D

plot

spectra: SpectraNS3D 

plot1d
plot3d 

spatial_means: SpatialMeansNS3D 

plot 

phys_fields: PhysFieldsBase3D

plot
animate 

Figure 1: UML diagram of the simulation object (sim) for the solver
fluidsim.solvers.ns3d. Each block represents an object or instance of a class,
and the object name and the class name are written as headings. The solid ar-
rows show how objects are associated with each other. Methods and variables of
significance to the user are displayed in the body of each object block.

Fig. 1 demonstrates how an user can access different objects and its associated
methods through the simulation object for the solver fluidsim.solvers.ns3d. Do
note that the object and method names are similar, if not same, for other solvers.
The purpose of the objects are listed below in the order of instantiation:

• sim.params: A copy of the params object supplied by the user, which holds
all information critical to run the simulation and generating the output.

• sim.info solver: Contains all the subclass information, including the mod-
ule the class belongs to.

https://www.uml-diagrams.org
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• sim.info: A union of the sim.info solver and the sim.params objects.

• sim.oper: Responsible for generating the grid, and for pseudo-spectral nu-
merical methods such as FFT, IFFT, dealiasing, divergence, curl, random
arrays, etc.

• sim.output: Takes care of all on-the-fly post-processing outputs and func-
tions to load and plot saved output files. Different objects are assigned with
tasks of loading, plotting and sometimes computing:

– sim.output.print stdout: the mean energies, time elapsed and time-
step of the simulation printed as console output.

– sim.output.phys fields: the state variables in the physical plane. It
relies on sim.state to load or compute the variables into arrays.

– sim.output.spatial means: mean quantities such as energy, enstrophy,
forcing power, dissipation.

– sim.output.spectra: energy spectra as line plots (i.e. as functions of
the module or a component of the wavenumber).

– sim.output.spect energy budg: spectral energy budget by calculating
the transfer term.

– sim.output.increments: structure functions from physical velocity fields.

• sim.state: Defines the names of the physical variables being solved for and
their spectral equivalents, along with all required variable transformations.
Also includes high-level objects, aptly named sim.state.state phys and
sim.state.state spect to hold the arrays.

• sim.time stepping: Generic numeric time-integration object which dynam-
ically determines the time-step using the CFL criterion for specific solver and
advances the state variables using Runge-Kutta method of order 2 or 4.

• sim.init fields: Used only once to initialize all state variables from a previ-
ously generated output file or with simple kinds of flow structures, for example
a dipole vortex, base flow with constant value for all gridpoints, grid of vor-
tices, narrow-band noise, etc.

• sim.forcing: Initialized only when params.forcing.enable is set as True

and it computes the forcing variables, which is added on to right-hand-side of
the equations being solved.

• sim.preprocess: Adjusts solver parameters such as the magnitude of ini-
tialized fields, viscosity value and forcing rates after all other subclasses are
initialized, and just before the time-integration starts.

Such a modular organization of the solver’s features has several advantages. The
most obvious one, will be the ease of maintaining the code base. As opposed to a
monolithic solver, modular codes are well separated and leads to less conflicts while
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merging changes from other developers. Secondly, with this implementation, it is
possible to extend or replace a particular set of features by inheriting or defining a
new class.
Modular codes can be difficult to navigate and understand the connection between
objects and the classes in static languages. It is much less a problem with Python
where one can easily decipher this information from object attributes or using
IPython’s dynamic object information feature9. Now, fluidsim goes one step fur-
ther and one can effortlessly print the sim.info solver object in the Python /
IPython console, to get this information. A truncated example of the output is
shown below.

>>> sim.info_solver

<fluidsim.solvers.ns3d.solver.InfoSolverNS3D object at 0x7fb6278263c8>

<solver class_name="Simul" module_name="fluidsim.solvers.ns3d.solver"

short_name="ns3d">

<classes>

<Operators class_name="OperatorsPseudoSpectral3D"

module_name="fluidsim.operators.operators3d"/>

<State class_name="StateNS3D" keys_computable="['rotz']"

keys_linear_eigenmodes="['rot_fft']" keys_phys_needed="['vx', 'vy',

'vz']" keys_state_phys="['vx', 'vy', 'vz']"

keys_state_spect="['vx_fft', 'vy_fft', 'vz_fft']"

module_name="fluidsim.solvers.ns3d.state"/>

<TimeStepping class_name="TimeSteppingPseudoSpectralNS3D"

module_name="fluidsim.solvers.ns3d.time_stepping"/>

<InitFields class_name="InitFieldsNS3D"

module_name="fluidsim.solvers.ns3d.init_fields">

<classes>

<from_file class_name="InitFieldsFromFile"

module_name="fluidsim.base.init_fields"/>

<from_simul class_name="InitFieldsFromSimul"

module_name="fluidsim.base.init_fields"/>

<in_script class_name="InitFieldsInScript"

module_name="fluidsim.base.init_fields"/>

<constant class_name="InitFieldsConstant"

module_name="fluidsim.base.init_fields"/>

<!--truncated output-->

</classes>

</solver>

Note that while the 3D Navier-Stokes solver relies on some generic base classes,
such as OperatorsPseudoSpectral3D and TimeSteppingPseudoSpectral, shared

9See ipython.readthedocs.io.

http://fluidsim.readthedocs.io
https://ipython.readthedocs.io/en/stable/interactive/reference.html#dynamic-object-information
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with other solvers; for other purposes there are solver specific classes. The latter is
often inherited from the base classes in fluidsim.base or classes available in other
solvers — this made possible by the use of an object-oriented approach. This is
particularly advantageous while extending existing features or creating new solvers
to use class inheritance.

Performance

Performance of a code can be carefully measured by three different program analysis
methods: profiling, micro-benchmarking and scalability analysis. Profiling traces
various function calls and records the cumulative time consumed and the number
of calls for each function. Through profiling, we shed light on what part of the
code consumes the lion’s share of the computational time and observe the impact
as number of processes and MPI communications increase. Micro-benchmarking is
the process of timing a specific portion of the code and comparing different imple-
mentations. The aspect is addressed in greater detail in the companion paper on
fluidfft (Mohanan et al., 2018). On the other hand, a scalability study measures
how the speed of the code improves when it is deployed with multiple CPUs operat-
ing in parallel. To do this, the walltime required by the whole code is measured to
complete a certain number of iterations, given a problem size. Finally, performance
can also be studied by comparing different codes on representative problems. Since
such comparisons should not focus only on performance, we present a comparison
study in a separate section.

Cluster Beskow (Cray XC40 system with Aries inter-
connect)

CPU Intel Xeon CPU E5–2695v4, 2.1GHz
Operating System SUSE Linux Enterprise Server 11, Linux Ker-

nel 3.0.101
No. of cores per nodes used 32
Maximum no. of nodes used 32 (2D cases), 256 (3D cases)
Compilers CPython 3.6.5, Intel C++ Compiler (icpc)

18.0.0
Python packages fluiddyn 0.2.3, fluidfft 0.2.3, fluidsim

0.2.1, numpy (OpenBLAS) 1.14.2, Cython

0.28.1, mpi4py 3.0.0, pythran 0.8.5

Table 1: Specifications of the supercomputing cluster and software used for profiling
and benchmarking.

The profiling and scaling tests were conducted in a supercomputing cluster of
the Swedish National Infrastructure for Computing (SNIC) namely Beskow (PDC,
Stockholm). Relevant details regarding software and hardware which affect perfor-
mance are summarised in Table 1. Note that no hyperthreading was used while
carrying out the studies. The code comparisons were made on a smaller machine.
Results from the three analyses are systematically studied in the following sections.

https://docs.python.org/3/tutorial/classes.html#inheritance
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wiktionary.org/wiki/microbenchmark
http://fluidfft.readthedocs.io
https://en.wikipedia.org/wiki/Scalability#Performance_tuning_versus_hardware_scalability
http://fluiddyn.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidsim.readthedocs.io
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Profiling

It is straightforward to perform profiling with the help of the cProfile module,
available in the Python standard library. For fluidsim, this module has been
conveniently packaged into a command line utility, fluidsim-profile. Here, we
have analyzed both 2D and 3D Navier-Stokes solvers in Beskow, and plotted the
results in Fig. 2 and Fig. 3 respectively. Functions which consume less than 2% of
the total time are displayed within a single category, other.

ifft as arg

50.8%

fft as arg
12.1%

vecfft from rotfft (pythran)

11.8%

gradfft from fft (pythran)

11.7% one time step computation
6.6%

compute Frot (pythran)5.6%
other1.3%

(a) 1 process

ifft as arg

57.8%

fft as arg

12.3%

one time step computation

8.0%
gradfft from fft (pythran)

6.5% vecfft from rotfft (pythran)
6.3%

compute Frot (pythran)
6.2%

other2.9%

(b) 8 processes

Figure 2: Profiling analysis of the 2D Navier-Stokes (fluidsim.solvers.ns2d)
solver using a grid sized 1024 × 1024 (a) in sequential with fft2d.with fftw1d

operator and (b) with 8 processes with fft2d.mpi with fftwmpi2d operator.

In Fig. 2 both sequential and parallel profiles of the 2D Navier-Stokes solver shows
that majority of time is spent in inverse and forward FFT calls (ifft as arg and
fft as arg). For the sequential case, approximately 0.14% of the time is spent in
pure Python functions, i.e. functions not built using Cython and Pythran. Cython
extensions are responsible for interfacing with FFT operators and also for the time-
step algorithm. Pythran extensions are used to translate most of the linear algebra
operations into optimized, statically compiled extensions. We also see that only
1.3% of the time is not spent in the main six functions (category other in the
figure). With 8 processes deployed in parallel, time spent in pure Python function
increases to 1.1% of the total time. These results show that during the optimization
process, we have to focus on a very small number of functions.
From Fig. 3 it can be shown that, for the 3D Navier-Stokes solver for all cases
majority of time is attributed to FFT calls. The overall time spent in pure Python
function range from 0.001% for 5123 grid points and 2 processes to 0.46% for 1283

grid points and 8 processes. This percentage tends to increase with the number
of processes used since the real calculation done in compiled extensions take less
time. This percentage is also higher for the coarser resolution for the same reason.
However, the time in pure Python remains for all cases largely negligible compared
to the time spent in compiled extensions.

Scalability

Scalability can be quantified by speedup S which is a measure of the time taken
to complete N iterations for different number of processes, np. We shall refrain
from comparing sequential runs in this context, since the operators used for the

https://docs.python.org/3/library/profile.html
http://fluidsim.readthedocs.io
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fft as arg
23.4%

ifft as arg destroy

22.1%

ifft as arg
22.0%

one time step computation

15.3% rotfft from vecfft outin (pythran)

5.9% project perpk3d (pythran)
5.2%

vector product (pythran)4.8%
other1.2%

(a) 128×128×128, 1 process

ifft as arg destroy
24.4%

ifft as arg

24.2%

fft as arg
21.8%

one time step computation

12.1%
rotfft from vecfft outin (pythran)

5.5% project perpk3d (pythran)
5.3%

vector product (pythran)5.2%
other1.6%

(b) 128×128×128, 8 processes

fft as arg

29.1%
ifft as arg

28.9%

ifft as arg destroy

28.9%
one time step computation

6.3% rotfft from vecfft outin (pythran)
2.4% other2.3%

project perpk3d (pythran)2.1%

(c) 512×512×512, 2 processes

fft as arg

29.4%

ifft as arg
29.3%

ifft as arg destroy

29.1%
one time step computation

5.0% rotfft from vecfft outin (pythran)
2.4% project perpk3d (pythran)2.3%

vector product (pythran)2.1% other0.4%

(d) 512×512×512, 128 processes

Figure 3: Profiling analysis of the 3D Navier-Stokes (fluidsim.solvers.ns3d)
solver. Top row: grid sized 128 × 128 × 128 solved (a) sequen-
tially using fft3d.with fftw3d operator and (b) with 8 processes using
fft3d.mpi with fftwmpi3d operator. Bottom row: grid sized 512 × 512 × 512
using fft3d.mpi with fftwmpi3d operator (c) with 2 processes and (d) with 128
processes.

sequential mode differ from the parallel mode, especially the FFT class. Speedup
is formally defined here as:

Sα(np) =
[Time elapsed for N iterations with np,min processes]fastest × np,min

[Time elapsed for N iterations with np processes]α
(1)

where np,min is the minimum number of processes employed for a specific array
size and hardware, α denotes the FFT class used and “fastest” corresponds to the
fastest result among various FFT classes. In addition to number of processes, there
is another important parameter, which is the size of the problem; in other words,
the number of grid points used to discretize the problem at hand. In strong scaling
analysis, we keep the global grid-size fixed and increase the number of processes.
Ideally, this should yield a speedup which increases linearly with number of pro-
cesses. Realistically, as the number of processes increase, so does the number of MPI
communications, contributing to some latency in the overall time spent and thus
resulting in less than ideal performance. Also, as shown by profiling in the previous
section, majority of the time is consumed in making forward- and inverse-FFT calls,
an inherent bottleneck of the pseudo-spectral approach. The FFT function calls are
the source of most of the MPI calls during runtime, limiting the parallelism.

2D benchmarks

The Navier-Stokes 2D solver (fluidsim.solvers.ns2d) solving an initial value
problem (with random fields) was chosen as the test case for strong scaling anal-
ysis here. The physical grid was discretized with 1024 × 1024 and 2048 × 2048
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points. Fourth-order Runge-Kutta (RK4) method with a constant time-step was
used for time-integration. File input-output and the forcing term has been dis-
abled so as to measure the performance accurately. The test case is then exe-
cuted for 20 iterations. The time elapsed was measured just before and after the
sim.time stepping.start() function call, which was then utilized to calculate
the average walltime per iteration and speedup. This process is repeated for two
different FFT classes provided by fluidfft, viz. fft2d.mpi with fftw1d and
fft2d.mpi with fftwmpi2d.
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Figure 4: Strong scaling benchmarks of the 2D Navier-Stokes
(fluidsim.solvers.ns2d) solver. The number of cores np goes from 2 to
210 = 1024. Crosses and dots correspond to 1024 × 1024 and 2048 × 2048 grid
points, respectively.

In Fig. 4 we have analyzed the strong scaling speedup S and walltime per iteration.
The fastest result for a particular case is assigned the value S = np as mentioned
earlier in Eq. 1. Ideal speedup is indicated with a dotted black line and it varies
linearly with number of processes. We notice that for the 1024× 1024 case there is
an assured increasing trend in speedup for intra-nodes computation. Nevertheless,
when this test case is solved with over a node (np > 32); the speedup drops abruptly.
While it may be argued that the speedup is impacted by the cost of inter-node MPI
communications via network interfaces, that is not the case here. This is shown
by speedup for the 2048 × 2048 case, where speedup increases from np = 32 to
64, after which it drops again. It is thus important to remember that a decisive
factor in pseudo-spectral simulations is the choice of the grid size, both global and
local (per-process), and for certain shapes the FFT calls can be exceptionally fast
or vice-versa.
From the above results, it may also be inferred that superior performance is achieved
through the use of fft2d.mpi with fftwmpi2d as the FFT method. The fft2d.mpi with fftw1d

method serves as a fallback option when either FFTW library is not compiled using

http://fluidfft.readthedocs.io
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MPI bindings or the domain decomposition results in zero-shaped arrays, which is a
known issue with the current version of fluidsim and requires further development.
To the right of Fig. 4, the real-time or walltime required to perform a single iteration
in seconds is found to vary inversely proportional to the number of processes, np.
The walltime per iteration ranges from 0.195 to 0.023 seconds for the 1024× 1024
case, and from 0.128 to 0.051 seconds for the 2048 × 2048 case. Thus it is indeed
feasible and scalable to use this particular solver.

3D benchmarks

Using a similar process as described in the previous section, the Navier-Stokes
3D solver (fluidsim.solvers.ns3d) is chosen to perform 3D benchmarks. As
demonstrated in Fig. 5 two physical global grids with 128× 128× 128 and 1024×
1024 × 1024 are used to discretize the domain. Other parameters are identical to
what was described for the 2D benchmarks.
Through fluidfft, this solver has four FFT methods at disposal:

• fft3d.mpi with fftw1d

• fft3d.mpi with fftwmpi3d

• fft3d.mpi with p3dfft

• fft3d.mpi with pfft

The first two methods implements a 1D or slab decomposition, i.e. the processes
are distributed over one index of a 3D array. And the last two methods implement
a 2D or pencil decomposition. For the sake of clarity, we have restricted this
analysis to the fastest FFT method of the two types in this configuration, viz.
fft3d.mpi with fftwmpi3d and fft3d.mpi with p3dfft. A more comprehensive
study of the performance of these FFT methods can be found in Mohanan et al.
(2018).
In Fig. 5 the strong scaling speedup and walltime per iteration are plotted from 3D
benchmarks in Beskow. The analysis here is limited to single-node and inter-node
performance. For both grid-sizes analyzed here, the fft3d.mpi with fftwmpi3d

method is the fastest of all methods but limited in scalability because of the 1D
domain decomposition strategy. To utilize a large number of processors, one requires
the 2D decomposition approach. Also, note that for the 1024× 1024× 1024 case, a
single-node measurement was not possible as the size of the arrays required to run
the solvers exceeds the available memory. For the same case, a speedup reasonably
close to linear variation is observed with fft3d.mpi with p3dfft. It is also shown
that the walltime per iteration improved from 0.083 to 0.027 seconds for the 128×
128× 128 case, and from 31.078 to 2.175 seconds for the 1024× 1024× 1024 case.

CFD pseudo-spectral code comparisons

As a general CFD framework, fluidsim could be compared to OpenFOAM (a CFD
framework based on finite-volume methods). However, in contrast to OpenFOAM,

http://fluidsim.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidsim.readthedocs.io
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Figure 5: Strong scaling benchmarks of the 3D Navier-Stokes
(fluidsim.solvers.ns3d) solver in Beskow. The number of cores np goes
from 25 = 32 to 213 = 8192. Crosses and dots correspond to 1283 and 10243 grid
points, respectively.

the current version of fluidsim is highly specialized in pseudo-spectral Fourier
methods and it is not adapted for industrial CFD.
In this subsection, we compare fluidsim with three other open-source CFD pseudo-
spectral codes10:

• Dedalus (Burns et al., n.d.) is “a flexible framework for spectrally solving
differential equations”. It is very versatile and the user describes the problem
to be solved symbolically. This approach is very different than the one of
fluidsim, where the equations are described with simple Numpy code. There is
no equivalent of the fluidsim concept of a “solver”, i.e. a class corresponding
to a set of equations with specialized outputs (with the corresponding plotting
methods). To run a simulation with Dedalus, one has to describe the problem
using mathematical equations. This can be very convenient because it is very
versatile and it is not necessary to understand how Dedalus works to define a
new problem. However, this approach has also drawbacks:

– Even for very standard problems, one needs to describe the problem in
the launching script.

– There is a potentially long initialization phase during which Dedalus
processes the user input and prepares the “solver”.

– Even when a user knows how to define a problem symbolically, it is not

10For the sake of conciseness, we limit this comparison to only four codes. We have also found
the Julia code FourierFlows.jl to demonstrate interesting performance for 2D sequential runs, but
without support for 3D cases and MPI parallelization.

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://dedalus-project.org/
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://github.com/FourierFlows/FourierFlows.jl
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simple to understand how the problem is solved by Dedalus and how to
interact with the program with Python.

– Since solvers are not implemented out-of-the-box in Dedalus, specialized
forcing scheme or outputs are absent. For example, the user has to
implement the computation, saving and plotting of standard outputs
like energy spectra.

• SpectralDNS (Mortensen and Langtangen, 2016) is a “high-performance pseudo-
spectral Navier-Stokes DNS solver for triply periodic domains. The most no-
table feature of this solver is that it is written entirely in Python using Numpy,
MPI for Python (mpi4py) and pyFFTW.”

Therefore, SpectralDNS is technically very similar to fluidsim. Some differ-
ences are that SpectralDNS has no object oriented API, and that the user has
to define output and forcing in the launching script11, which are thus usually
much longer than for fluidsim. Moreover, the parallel Fourier transforms
are done using the Python package mpiFFT4py, which is only able to use the
FFTW library and not other libraries as with fluidfft (Mohanan et al.,
2018).

• NS3D is a highly efficient pseudo-spectral Fortran code. It has been written
in the laboratory LadHyX and used for several studies involving simulations
(in 3D and in 2D) of the Navier-Stokes equations under the Boussinesq ap-
proximation with stratification and system rotation (Deloncle et al., 2008).
It is in particular specialized in stability studies (Billant et al., 2010). NS3D
has been highly optimized and it is very efficient for sequential and parallel
simulations (using MPI and OpenMP). However, the parallelization is limited
to 1D decomposition for the FFT (Mohanan et al., 2018). Another weak-
ness compared to fluidsim is that NS3D uses simple binary files instead of
HDF5 and NetCDF4 files for fluidsim. Therefore, visualization programs
like Paraview or Visit cannot load NS3D data.

As with many Fortran codes, Bash and Matlab are used for launching and
post-processing, respectively. In terms of user experience, this can be a draw-
back compared to the coherent framework fluidsim for which the user works
only with Python.

In contrast to the framework fluidsim for which it is easy to define a new
solver for a new set of equations, NS3D is specialized in solving the Navier-
Stokes equations under the Boussinesq approximation. Using NS3D to solve
a new set of equations would require very deep changes in many places in the
code.

For quantitative comparisons and for the sake of simplicity, we limit ourselves to
compare only sequential runs. We have already discussed in detail, the issue of
the scalability of pseudo-spectral codes based on Fourier transforms in the previous
section and in the companion paper (Mohanan et al., 2018). We compare the code

11See the demo scripts of SpectralDNS.

https://github.com/spectralDNS/spectralDNS
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://github.com/spectralDNS/mpiFFT4py
http://fluidfft.readthedocs.io
https://bitbucket.org/paugier/ns3d
https://www.ladhyx.polytechnique.fr
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://github.com/spectralDNS/spectralDNS/tree/master/demo


UP JORS software Latex paper template version 0.1

fluidsim Dedalus SpectralDNS NS3D
5122 0.54 8.01 0.92 0.82
10242 2.69 43.00 3.48 3.96

Table 2: Elapsed times (in seconds) for ten RK4 time steps for two bidimensional
cases and the four CFD codes.

with a very simple and standard task, running a solver for ten time steps with
the Runge-Kutta 4 method. Note that Dedalus does not implement the standard
fully explicit RK4 method12. Thus for Dedalus, we use the most similar time
stepping scheme available, RK443, a 4-stage, third-order mixed implicit-explicit
scheme described in Ascher et al. (1997). Note that in the other codes, part of the
linear terms are also treated implicitly. Also note that in several cases, the upper
bound of time step is not first limited by the stability of the time scheme, rather by
other needs (to resolve the fastest wave, accuracy, etc.), so these benchmarks are
representative of elapsed time for accurate real-life simulations.

Bi-dimensional simulations. We first compare the elapsed times for two resolu-
tions (5122 and 10242) over a bi-dimensional space. The results are summarized in
Table 2. The results are consistent for the two resolutions. fluidsim is the fastest
code for these cases. Dedalus is more than one order of magnitude slower but as
discussed earlier, the time stepping method is different. Also note that Dedalus
has more been optimized for bounded domains with Chebyshev methods. The two
other codes SpectralDNS and NS3D have similar performance: slightly slower than
fluidsim and much faster than Dedalus. Surprisingly, the Fortran code NS3D is
slower (47%) than the Python code fluidsim. This can be explained by the fact
that there is no specialized numerical scheme for the 2D case in NS3D, so that
more FFTs have to be performed compared to SpectralDNS and fluidsim. This
highlights the importance of implementing a well-adapted algorithm for a class of
problems, which is much easier with a highly modular code as fluidsim than with
a specialized code as NS3D.

Tri-dimensional simulations. We now compare the elapsed times for ten RK4
time steps for a tri-dimensional case with a resolution 1283. Dedalus is slow and
does not seem to be adapted for this case so we do not give exact elapsed time
for this code. SpectralDNS is slightly slower (11.55 s) than the two other codes
(9.45 s for fluidsim and 9.52 s for NS3D). This difference is mainly explained by
the slower FFTs for SpectralDNS.
Fig. 6 presents a more detailed comparison between NS3D (blue bars) and fluidsim

(yellow bars). The total elapsed times is mainly spent in five tasks: FFTs, Runge-
Kutta 4, curl, vector product and “projection”. The times spent to perform these
tasks are compared for the two codes.
We see that FFTs in NS3D are very fast: the FFT execution is 0.55 s longer for
fluidsim (nearly 9% longer). This difference is especially significant for sequential

12See the Dedalus issue 38.

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://bitbucket.org/dedalus-project/dedalus/issues/38/slow-simulation-ns2d-over-a-biperiodic
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Figure 6: Comparison of the execution times for a 3D case (1283, 10 time steps) be-
tween NS3D (blue bars) and fluidsim.solvers.ns3d (yellow bars). The first two
bars correspond to the total time and the others to the main tasks in terms of time
consumption, namely FFT, Runge-Kutta 4, curl, vector product and “projection”.

run for which there is no communication cost involved in the FFT computation,
thus making it the least favorable case for fluidsim. Indeed, MPI communications
are input-output bounded tasks which are not faster in Fortran than in Python.
This difference can partially be explained by the fact that in NS3D, all FFTs are
inplace (so the input can be erased during the transform). On one hand, this choice
is good for performance and for a lower memory consumption. On the other hand,
since the same variables are used to store the fields in real and in Fourier spaces,
it makes the code harder to write, to understand and to modify. Since memory
consumption in clusters is much less of a problem than in the past and that code
simplicity is highly important for a framework like fluidsim, we choose to use
out-of-place FFTs in fluidsim. Another factor is that the flag FFTW PATIENT
is used in NS3D which leads to very long initialization and sometimes faster FFTs.
Since we did not see significant speed-up by using this flag in fluidsim and that
we also care about initialization time, this flag is not used and we prefer to use the
flag FFTW MEASURE, which usually leads to similar performance.
Time stepping in NS3D is significantly slower than in fluidsim (0.34 s ' 20 %
slower). We did not find a performance issue in NS3D. The linear operators are
slightly faster in fluidsim than in the Fortran code NS3D. This is because this
corresponds to Pythran functions written with explicit loops (see Mohanan et al.,
2018).
Although the FFTs are a little bit faster for NS3D, the total time is slightly smaller
(less than 1% of the total time) for fluidsim for this case.
These examples do not prove that fluidsim is always faster than NS3D or is as
fast as any very well optimized Fortran codes. However, they do demonstrate that

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
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our very high-level and modular Python code is very efficient and is not slower than
a well-optimized Fortran code.

Quality control
fluidsim also packages unittests to go alongside the related modules. Throughout
the development process it is made sure that all tests pass on priority to ensure
that new changes to package does not damage existing functionality.
It is also important to quantify the efficacy of the tests, and this is done by calcu-
lating the code coverage. Code coverage is the ratio of the number of lines tested by
unittests over the total number of lines in the whole package. For the present ver-
sion of fluidsim the code coverage is valued at approximately 60%. For fluidsim,
the code coverage results are displayed at Codecov.
We also try to follow a consistent code style as recomended by PEP (Python en-
hancement proposals) 8 and 257. This is also inspected using lint checkers such as
flake8 and pylint among the developers. The code is regularity cleaned up using
the Python code formatter black.
All the above quality control techniques are implemented within the continuous
testing solutions, Travis CI and Bitbucket Pipelines. Instructions on how to run
unittests, coverage and lint tests are included in the documentation.

(2) Availability

Operating system
Any POSIX based OS, such as GNU/Linux and macOS.

Programming language
Python 2.7, 3.4 or above.

Dependencies
• Minimum: fluiddyn, Numpy, h5netcdf, fluidfft (and FFT libraries, see

Mohanan et al., 2018).

• Optional: Scipy, mpi4py, Cython and Pythran, pulp.

List of contributors
• Ashwin Vishnu Mohanan (KTH): Development of the shallow water equa-

tions solver, fluidsim.solvers.sw1l, testing, continuous integration, code
coverage and documentation.

• Cyrille Bonamy (LEGI): Extending the sub-package fluidsim.operators.fft
(currently deprecated) into a dedicated package, fluidfft used by fluidsim

solvers.

• Miguel Calpe (LEGI): Development of the 2D Boussinesq equation solver,
fluidsim.solvers.ns2d.strat.

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://codecov.io/bb/fluiddyn/fluidsim
http://fluiddyn.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidsim.readthedocs.io
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• Pierre Augier (LEGI): Creator of fluidsim and FluidDyn project, developer
of majority of the modules and solvers, future-proofing with Python 3 com-
patibility and documentation.

Software location:
Archive

Name: PyPI
Persistent identifier: https://pypi.org/project/fluidsim
Licence: CeCILL, a free software license adapted to both international and
French legal matters, in the spirit of and retaining compatibility with the
GNU General Public License (GPL).
Publisher: Pierre Augier
Version published: 0.2.2
Date published: 02/07/2018

Code repository

Name: Bitbucket
Persistent identifier: https://bitbucket.org/fluiddyn/fluidsim
Licence: CeCILL
Date published: 2015

Emulation environment

Name: Docker
Persistent identifier: https://hub.docker.com/r/fluiddyn/python3-stable
Licence: CeCILL-B, a BSD compatible French licence.
Date published: 02/10/2017

Language
English

(3) Reuse potential
fluidsim can be used in research and teaching to run numerical simulations with
existing solvers. Its simplicity of use and its plotting capacities make it particu-
larly adapted for teaching. fluidsim is used at LEGI and at KTH for studies on
geophysical turbulence (see for example Lindborg and Mohanan, 2017). Since it is
easy to modify any characteristics of the existing solvers or to build new solvers,
fluidsim is a good tool to carry out other types of simulations for academic studies.
The qualities and advantages of fluidsim (integration with the Python ecosystem
and the FluidDyn project, documentation, reliability — thanks to unittests and
continuous integration —, versatility, efficiency and scalability) make us think that
fluidsim can become a true collaborative code.
There is no formal support mechanism. However, bug reports can be submitted at
the Issues page on Bitbucket. Discussions and questions can be aired on instant
messaging channels in Riot (or equivalent with Matrix protocol)13 or via IRC pro-

13 https://matrix.to/#/#fluiddyn-users:matrix.org

http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
http://fluidsim.readthedocs.io
https://bitbucket.org/fluiddyn/fluidsim/issues
https://matrix.to/#/#fluiddyn-users:matrix.org
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tocol on Freenode at #fluiddyn-users. Discussions can also be exchanged via the
official mailing list14.
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